

Answer on Question 58243, Physics, Electromagnetism

Question:

A balloon with a charge of $6.0 \cdot 10^{-5} \text{ C}$ is held at a distance of 0.10 m from a second balloon with the same charge. What is the repulsive force and why?

Solution:

We can find the magnitude of the repulsive force from the Coulomb's Law:

$$F_{repulsive} = k \frac{q_1 q_2}{r^2},$$

here, $k = \frac{1}{4\pi\epsilon_0} = 9 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$ is the Coulomb's constant, $q_1 = q_2 = 6.0 \cdot 10^{-5} \text{ C}$ is the charges of two balloons, r is the distance between two balloons.

Then, we get:

$$F_{repulsive} = 9 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \cdot \frac{6.0 \cdot 10^{-5} \text{ C} \cdot 6.0 \cdot 10^{-5} \text{ C}}{(0.10 \text{ m})^2} = 3240 \text{ N.}$$

Answer:

$$F_{repulsive} = 3240 \text{ N.}$$