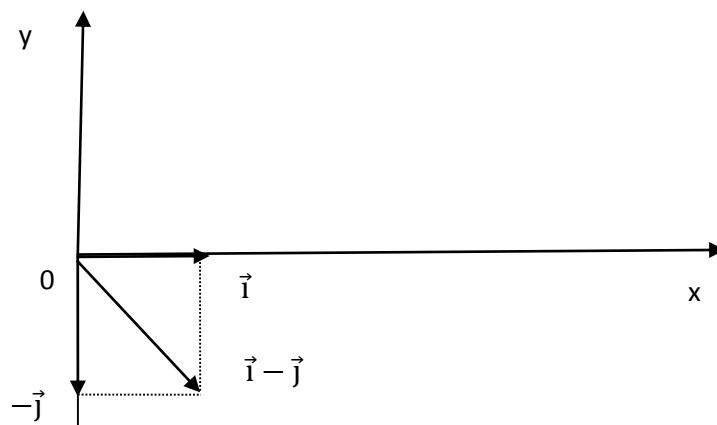


Answer on Question #58241, Physics / Mechanics | Relativity

\vec{i} and \vec{j} are unit vectors along x and y axis respectively. What is the magnitude and direction of the vectors $\vec{i} + \vec{j}$, and $\vec{i} - \vec{j}$? What are the components of a vector $A = 2\vec{i} + 3\vec{j}$ along the directions of $\vec{i} + \vec{j}$ and $\vec{i} - \vec{j}$? [You may use graphical method]

Solution:



$$\vec{i}(1; 0)$$

$$\vec{j}(0; 1)$$

$$\vec{i} + \vec{j}(1; 1)$$

$$|\vec{i} + \vec{j}| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\vec{i}(1; 0)$$

$$\vec{j}(0; -1)$$

$$\vec{i} - \vec{j}(1; -1)$$

$$|\vec{i} - \vec{j}| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

The components of a vector $A = 2i + 3j$ along the directions of $\vec{i} + \vec{j}$: $\vec{A}(2; 3)$.

The components of a vector $A = 2i + 3j$ along the directions of $\vec{i} - \vec{j}$: $\vec{A}(2; -3)$.

Answer:

$$|\vec{i} + \vec{j}| = \sqrt{2}$$

$$|\vec{i} - \vec{j}| = \sqrt{2}$$

$$\vec{A}(2; 3)$$

$$\vec{A}(2; -3).$$