Answer on Question \#58205/ Physics - Molecular Physics | Thermodynamics

A rod 20 cm long, has both its ends maintained at $\mathrm{o}^{*} \mathrm{C}$ at all times. At time $\mathrm{t}=\mathrm{o}$ the temperature distribution in the rod is

$\mathrm{T}(\mathrm{x}, \mathrm{o})=\left\{50^{*} \mathrm{C}\right.$ for $\mathrm{O}<\mathrm{x}<10 \mathrm{~cm}$
 $\left\{0^{*} \mathrm{C}\right.$ for $10 \mathrm{~cm}<\mathrm{x}<20 \mathrm{~cm}$

Obtain the temperature distribution $u(x, t)$ in the rod if $u(x, t)$ satisfies the diffusion equation:
$\mathrm{d}^{\wedge} 2 \mathrm{u}(\mathrm{x}, \mathrm{t}) / \mathrm{dx}{ }^{\wedge} 2=0.5(\mathrm{du}(\mathrm{x}, \mathrm{t}) / \mathrm{dt})$

Solution

Let us write down whole differential equation with boundary and initial conditions u - is temperature of rod and function of $x, t u=u(x, t)$, length of rod is $l=20 \mathrm{~cm}$

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{2} \frac{\partial u}{\partial t}, 0<x<l, t>0 \\
u(0, t)=0 \\
u(l, t)=0 \\
u(x, 0)=\left\{\begin{array}{c}
50=T_{0}, 0<x<10 \\
0,10<x<20
\end{array}\right.
\end{gathered}
$$

So, we start from separation of variables.
Let $u(x, t)=X(x) \cdot T(t)$, where $X(x)-$ function that depends only on x variable, $T(t)-$ function that depends only on t variable.

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =T \cdot \frac{d^{2} X}{d x^{2}} \\
\frac{\partial u}{\partial t} & =X \cdot \frac{d T}{d t}
\end{aligned}
$$

And

$$
\begin{gathered}
X(0)=0 \\
X(l)=0
\end{gathered}
$$

From initial equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{1}{2} \frac{\partial u}{\partial t} \\
T \cdot \frac{d^{2} X}{d x^{2}} & =\frac{1}{2} X \cdot \frac{d T}{d t}
\end{aligned}
$$

Or

$$
\frac{\frac{d^{2} X}{d x^{2}}}{X}=\frac{1}{2} \frac{\frac{d T}{d t}}{T}=\lambda
$$

And our task now is to find λ

$$
\frac{\frac{d^{2} X}{d x^{2}}}{X}=\lambda
$$

Here we see spectral problem with boundary conditions.

$$
\begin{gathered}
\frac{d^{2} X}{d x^{2}}=\lambda X \\
X(0)=0 \\
X(l)=0
\end{gathered}
$$

1) $\operatorname{Put} \lambda=0$

$$
\begin{gathered}
X=C x+D \\
X(0)=0=D \\
X(l)=0=C l \rightarrow C=0
\end{gathered}
$$

So, $\lambda=0$ can't give us a solution
2) Put $\lambda>0, \lambda=w^{2}$

$$
\frac{d^{2} X}{d x^{2}}-w^{2} X=0
$$

Solution for this equation can be found in form of:

$$
\begin{gathered}
X=C \operatorname{sh}(w x)+D \operatorname{ch}(w x) \\
X(0)=0=C 0+D \rightarrow D=0
\end{gathered}
$$

$$
X(l)=0=C \operatorname{sh}(w l) \rightarrow \text { or } C=0 \text { or } \operatorname{sh}(w l)=0 \text {. If } \operatorname{sh}(w l)=0 \rightarrow \lambda
$$

$$
=0 \text {, and initial assumption was } \lambda>0 \text {.IfC }=0 \text {, again solution is trivial }
$$

3) Put $\lambda<0, \lambda=-w^{2}$

$$
\frac{d^{2} X}{d x^{2}}+w^{2} X=0
$$

Solution for this equation can be found in form of:

$$
\begin{gathered}
X=C \sin (w x)+D \cos (w x) \\
X(0)=0=C 0+D \rightarrow D=0 \\
X(l)=0=C \sin (w l) \text {, so if } C \neq 0, \text { then } \sin (w l)=0 \\
w l=n \pi, n=1,2,3, \ldots \\
w_{n}=\frac{n \pi}{l}
\end{gathered}
$$

And here we have spectrum of eigenvalues.
Eigenfunctions are $X_{n}=C_{n} \sin \left(w_{n} x\right)$

$$
\lambda=-w^{2}=\frac{1}{2} \frac{d T}{2} \frac{d t}{T}
$$

From previous row: $T_{n}=D_{n} e^{-2 w^{2} t}$

So,

$$
u_{n}(x, t)=\widetilde{D_{n}} e^{-2 w_{n}^{2} t} \sin \left(w_{n} x\right)
$$

$$
\mathrm{u}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}=1}^{+\infty} u_{n}(x, t)
$$

Then, we put initial condition

$$
u(x, 0)=\sum_{\mathrm{n}=1}^{+\infty} u_{n}(x, 0)=\sum_{\mathrm{n}=1}^{+\infty} \widetilde{D_{n}} \sin \left(w_{n} x\right)
$$

And $\widetilde{D_{n}}$ are coefficients of Fourier transform

$$
\widetilde{D_{n}}=\frac{2}{l} \int_{0}^{l} u(x, 0) \sin \left(w_{n} x\right) d x
$$

From

$$
\begin{gathered}
u(x, 0)=\left\{\begin{array}{l}
50,0<x<10 \\
0,10<x<20
\end{array}\right. \\
\widetilde{D_{n}}=\frac{2}{l} \int_{0}^{10} T_{0} \sin \left(w_{n} x\right) d x=\frac{2 T_{0}}{l}\left(-\left.\frac{\cos \left(w_{n} x\right)}{w_{n}}\right|_{0} ^{10}\right)=\frac{2 T_{0} l}{l}\left(\left.\frac{\cos \left(\frac{n \pi x}{l}\right)}{n \pi}\right|_{10=\frac{l}{2}} ^{0}\right) \\
=\frac{2 T_{0}}{n \pi}\left(1-\cos \left(\frac{n \pi}{2}\right)\right)=\frac{2 T_{0}}{n \pi} 2 \sin ^{2}\left(\frac{n \pi}{4}\right)=\frac{4 T_{0}}{n \pi} \sin ^{2}\left(\frac{n \pi}{4}\right)
\end{gathered}
$$

Result

$$
\mathrm{u}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}=1}^{+\infty} u_{n}(x, t)=\sum_{\mathrm{n}=1}^{+\infty} \frac{4 T_{0}}{n \pi} \sin ^{2}\left(\frac{n \pi}{4}\right) e^{-2\left(\frac{n \pi}{l}\right)^{2} t} \sin \left(\frac{n \pi x}{l}\right)
$$

