Answer on Question 58121, Physics, Other

Question:

1. An ideal gas is in equilibrium at initial state with temperature $T=137^{\circ} \mathrm{C}$, pressure $P=0.75 \mathrm{~Pa}$ and volume $V=0.75 \mathrm{~m}^{3}$. If there is a change in state in which the gas undergoes an isothermal process to a final state of equilibrium during which the volume is doubled. Calculate the temperature and pressure of the gas at this final state.

Solution:

a) As we know, an isothermal process is a change of a thermodynamic system, in which the temperature remains constant $(\Delta T=0)$. Hence, $T_{1}=T_{2}=137^{\circ} \mathrm{C}$.
b) As we know, for an ideal gas the product of pressure and volume is a constant if the gas is kept at isothermal conditions. Thus, we can use the Boyle's law:

$$
P_{1} V_{1}=P_{2} V_{2} .
$$

From this equation we can find pressure of the gas at the final state. Because the volume is doubled, we get:

$$
\begin{gathered}
P_{1} V_{1}=P_{2} \cdot 2 V_{1}, \\
P_{2}=\frac{P_{1}}{2}=\frac{0.75 P a}{2}=0.375 \mathrm{~Pa} .
\end{gathered}
$$

Answer:

a) $T_{2}=137^{\circ} \mathrm{C}$.
b) $P_{2}=0.375 \mathrm{~Pa}$.
2. Which of the following is not an equation of state of a thermodynamic system?
a) Charles law
b) Ideal gas law
c) Van der Waals equation
d) Kirchoff's junction rule

Solution:

Since the Kirchoff's junction rule is used in electrical engineering and not in thermodynamics, the correct answer is d) Kirchoff's junction rule.

Answer:
d) Kirchoff's junction rule

