Answer on Question \#58110, Physics / Mechanics

18 The exhaust gas of a rocket is expelled at the rate of $1300 \mathrm{~kg} / \mathrm{s}$, at the velocity of $50000 \mathrm{~m} / \mathrm{s}$. Find the thrust on the rocket in newtons
6.5×10^{7}
3.5×10^{7}
7.6×10^{7}
5.7×10^{7}

Solution:

Newton's second law of motion can be expressed as:

$$
F=m a=m \frac{d v}{d t}=\frac{d p}{d t}
$$

For the rocket:

$$
\frac{d p}{d t}=v \frac{d m}{d t}
$$

Hence:

$$
F=v \frac{d m}{d t}=\left(50000 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \cdot\left(1300 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)=6.5 \cdot 10^{7} \mathrm{~N}
$$

Answer: $6.5 \cdot 10^{7} \mathrm{~N}$

19 A force of $2 i \vec{i}+7 \vec{j} \mathrm{~N}$ acts on a body of mass 5 kg for 10 seconds. The body was initially moving with constant velocity of $\vec{i}-2 \vec{j} \mathrm{~m} / \mathrm{s}$. Find the final velocity of the body in m / s, in vector form.
$5 i \vec{i}+12 \vec{j}$
$12 \vec{i}-5 j \vec{j}$
$10 \vec{i}-7 \vec{j}$
$7 \vec{i}+10 \vec{j}$

Solution:

Newton's second law of motion can be expressed in equation form as follows:

$$
\vec{F}=m \vec{a}
$$

where m is mass of the body, F is force, a is acceleration.
The acceleration is

$$
\vec{a}=\frac{\vec{F}}{m}
$$

Velocity equals:

$$
\vec{v}=\overrightarrow{v_{0}}+\vec{a} t
$$

Substituting:

$$
\vec{v}=\vec{\imath}-2 \vec{\jmath}+\frac{2 \vec{\imath}+7 \vec{\jmath}}{5} \cdot 10=\vec{\imath}-2 \vec{\jmath}+4 \vec{\imath}+14 \vec{\jmath}=5 \vec{\imath}+12 \vec{\jmath}
$$

Answer: $5 \vec{\imath}+12 \vec{\jmath}$

