Answer on Question \#58099-Physics-Other

14 A force of $2 \vec{i}+7 \vec{j} \mathrm{~N}$ acts on a body of mass 5 kg for 10 seconds. The body was initially moving with constant velocity of $\vec{i}-2 \vec{j} \mathrm{~m} / \mathrm{s}$. Find the final velocity of the body in m / s, in vector form.
$5 i \vec{i}+12 \vec{j}$
$12 i \vec{i}-5 \vec{j}$
$10 i \vec{i}-7 \vec{j}$
$7 i \vec{i}+10 \vec{j}$

Solution

The acceleration vector is

$$
\vec{a}=\frac{\vec{F}}{m}=\frac{(2 \vec{\imath}+7 \overrightarrow{\mathrm{\jmath}})}{5} \frac{m}{s^{2}} .
$$

The final velocity of the body is

$$
\overrightarrow{v_{f}}=\overrightarrow{v_{l}}+\vec{a} t=\vec{\imath}-2 \vec{\jmath}+\left(\frac{(2 \vec{\imath}+7 \vec{\jmath})}{5}\right) 10=(5 \vec{\imath}+12 \vec{\jmath}) \frac{\mathrm{m}}{\mathrm{~s}} .
$$

Answer: $5 i \vec{i}+12 j$.

15 The exhaust gas of a rocket is expelled at the rate of $1300 \mathrm{~kg} / \mathrm{s}$, at the velocity of $50000 \mathrm{~m} / \mathrm{s}$. Find the thrust on the rocket in newtons
6.5×107
3.5×107
7.6×107
5.7×107

Solution

The thrust on the rocket is

$$
F=\frac{d m}{d t} v=1300 \frac{\mathrm{~kg}}{\mathrm{~s}} \cdot 50000 \frac{\mathrm{~m}}{\mathrm{~s}}=6.5 \cdot 10^{7} \mathrm{~N}
$$

Answer: 6.5×107.

16 Sand drops at the rate of $2000 \mathrm{~kg} / \mathrm{min}$. from the bottom of a hopper onto a belt conveyor moving horizontally at $250 \mathrm{~m} / \mathrm{min}$. Determine the force needed to drive the conveyor, neglecting friction.

152 N
Solution

$$
F=\frac{d m}{d t} v=2000 \frac{\mathrm{~kg}}{\min } \frac{\mathrm{~min}}{60 \mathrm{~s}} \cdot 250 \frac{\mathrm{~m}}{\min } \frac{\mathrm{~min}}{60 \mathrm{~s}}=139 \mathrm{~N} .
$$

Answer: 139 N.

