Answer on Question \#58067, Physics / Mechanics | Relativity

A turn of radius 20 m is banked for the vehicles going at a speed of $36 \mathrm{~km} / \mathrm{h}$. If the coefficient of static friction between the road and the tyre is 0.4 , what are the possible speeds of a vehicle so that it neither slips down nor skids up ?

Solution:

The net force must be horizontal--pointing toward the center of the circle--and only the friction force is available to provide it. The normal force and the weight simply cancel each other.

The centripetal force,

$$
F_{c}=\frac{M v^{2}}{r}
$$

For this flat curve, the centripetal force is supplied by the friction force, F_{f},

$$
\begin{gathered}
F_{f}=\mu N=\mu M g \\
F_{f}=F_{c}
\end{gathered}
$$

Thus,

$$
\begin{gathered}
\frac{M v^{2}}{r}=\mu M g \\
v=\sqrt{\mu g r}=\sqrt{0.4 \cdot 9.8 \cdot 20}=8.85 \frac{\mathrm{~m}}{\mathrm{~s}}=8.85 \cdot 3.6 \frac{\mathrm{~km}}{\mathrm{~h}} \approx 31.9 \frac{\mathrm{~km}}{\mathrm{~h}}
\end{gathered}
$$

Answer: $31.9 \frac{\mathrm{~km}}{\mathrm{~h}}$

