Answer on Question\#58050 - Physics - Relativity

Suppose you walk 12.5 m a direction exactly 23 degrees south of west then you walk 21 m in a direction exactly 44 degrees west of north.
For part A (I got) was The resultant, 28.03 meters
Now part b says:
What is the angle of the compass direction of a line connecting your starting point to your final position measured North of West in degress?

Solution.

Draw the resulting position using vectors.

- the starting point.

O-final point.
According to the problem $\propto_{1}=23^{\circ}$ and $\propto_{2}=44^{0}$.
Find components of displacement using the algebraic method of vector addition. The first vector has component $12.5 \cos 23^{\circ} \approx 11.5063$ directed to the south and $12.5 \sin 23^{\circ} \approx$ 4.8841 directed to the west. The second vector has component $21 \cos 44^{0} \approx 15.1061$ directed to the west and $21 \sin 44^{\circ} \approx 14.5878$ directed to the north. Hence, the components of the displacement vector equal
$21 \sin 44^{0}-12.5 \cos 23^{0}=14.5878-11.5063=3.0815$ directed to the north
$12.5 \sin 23^{\circ}+21 \cos 44^{\circ}=4.8841+15.1061=19.9902$ directed to the west

Magnitude of vector for the Pythagorean theorem

$$
d=\sqrt{3.0815^{2}+19.9902^{2}} \approx 20.22
$$

φ - the angle of the compass direction of a line connecting your starting point to your final position measured North of West. Using right triangle will get

$$
\sin \varphi=\frac{19,9902}{20,22} \rightarrow \varphi=81^{0} 21^{\prime}
$$

Answer: $\varphi=81^{\circ} 21^{\prime}$.

