

Answer on Question 58007, Physics, Mechanics, Relativity

Question:

A bullet is fired horizontally with an initial velocity of 900 ms^{-1} at a target located 150 ft from the rifle. How much time is required for the bullet to reach the target?

Solution:

In the condition of the question, the horizontal distance to the target x is given in feet. Let's first convert feet to meters:

$$x = (150 \text{ ft}) \cdot \left(\frac{12 \text{ in}}{1 \text{ ft}}\right) \cdot \left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right) \cdot \left(\frac{1 \text{ m}}{100 \text{ cm}}\right) = 45.72 \text{ m.}$$

Then, we can write the equation of horizontal motion of the bullet:

$$x = v_0 t,$$

here x is the horizontal distance to the target, v_0 is the initial velocity of the bullet, t is the time of flight.

From this formula we can find how much time is required for the bullet to reach the target:

$$t = \frac{x}{v_0} = \frac{45.72 \text{ m}}{900 \text{ ms}^{-1}} = 0.05 \text{ s.}$$

Answer:

$$t = 0.05 \text{ s.}$$