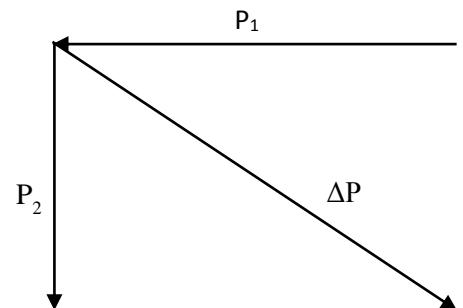


Answer on Question #57987, Physics / Mechanics | Relativity

Problem: A cricket ball of mass $m=150$ grams is delivered from a hand of a fast bowler at a speed of $v_1=90000$ m/s. The batsman strikes the ball with a bat of mass $M=900$ grams causing the ball to go straight down the ground with a momentum of $p_2=162$ kgm/s. What is the velocity of the bat before collision, given that the bat comes to rest after striking the ball.

Solution: Before collision: momentum of ball:

$$p_1 = m \cdot v_1 = 0.150 \text{ kg} \cdot 90000 \text{ ms}^{-1} = 13500 \text{ kg} \cdot \text{ms}^{-1}$$


Momentum of bat:

$$p_b = M \cdot v_b$$

After collision: momentum of ball: $p_2 = m \cdot v_2 = 162 \text{ kg} \cdot \text{ms}^{-1}$

$$\vec{p}_2 = \vec{p}_1 + \vec{\Delta p} \Rightarrow \vec{\Delta p} = \vec{p}_2 - \vec{p}_1$$

Following II Newton's law: $\vec{\Delta p} = \vec{p}_b$

$$p_b = |\vec{\Delta p}| = \sqrt{p_1^2 + p_2^2}$$

$$v_b = \frac{\sqrt{p_1^2 + p_2^2}}{M} = \frac{\sqrt{13500^2 + 162^2}}{0.9} \text{ ms}^{-1} = 15001 \text{ ms}^{-1}$$

Answer: $v_b = 15001 \text{ ms}^{-1}$