

Answer on Question 57903, Physics, Electromagnetism

Question:

Ten electrons have been removed from each atom to form ions. Find the electrostatic force between two such ions when separated by a distance of 4 angstrom in a medium of dielectric constant 4.

Solution:

We can find the electrostatic force between two such ions from the Coulomb's law:

$$F_e = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2},$$

here, $q_1 = q_2 = 10 \cdot 1.6 \cdot 10^{-19} \text{ C} = 16 \cdot 10^{-19} \text{ C}$ is the charges of two ions, r is the distance between two ions, ϵ is the permittivity of the medium in which the charges of ions are located.

The permittivity ϵ of the medium is related to the dielectric constant K of the medium by:

$$\epsilon = K\epsilon_0,$$

here, ϵ_0 is the permittivity of the vacuum.

Substituting ϵ into the first formula we get:

$$F_e = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2} = \frac{1}{4\pi K\epsilon_0} \frac{q_1 q_2}{r^2} = \frac{k}{K} \frac{q_1 q_2}{r^2},$$

here, $k = \frac{1}{4\pi\epsilon_0} = 9 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$ is the Coulomb's constant.

Finally, we can substitute known variables into the previous formula and find the electrostatic force between two such ions:

$$F_e = \frac{k}{K} \frac{q_1 q_2}{r^2} = \frac{9 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \cdot 16 \cdot 10^{-19} \text{ C} \cdot 16 \cdot 10^{-19} \text{ C}}{4 \cdot (4 \cdot 10^{-10} \text{ m})^2} = 3.6 \cdot 10^{-8} \text{ N}.$$

Answer:

$$F_e = 3.6 \cdot 10^{-8} \text{ N}.$$