Answer on Question 57878, Physics, Mechanics, Relativity

Question:

A uniform rope of length L and mass M is held at one end and whirled in a horizontal circle with angular velocity ω. You can ignore the force of gravity on the rope. Find the time required for a transverse wave to travel from one end of the rope to the other.

Solution:

Let's consider a small segment of the rope between r and $r+\Delta r$. The segment has a length of Δr and a mass of $m=M \Delta r / L$. Let's treat this segment as a particle and consider the forces and the Newton's law on this segment. The inward force of tension from the rope to the segment is $T(r)$, and the outward force to the segment is $T(r+\Delta r)$. The acceleration of the segment is $r \omega^{2}$ and it points toward the pivot. Let's assume that the positive r direction is outward, then the acceleration is negative, and applying the Second Newton's law we get:

$$
\begin{aligned}
T(r+\Delta r)-T(r) & =-m r \omega^{2}, \\
T(r+\Delta r)-T(r) & =-\frac{M}{L} \Delta r r \omega^{2}, \\
\frac{T(r+\Delta r)-T(r)}{\Delta r} & =-\frac{M}{L} r \omega^{2} .
\end{aligned}
$$

Let Δr approach to zero, than, using the definition of derivative we get:

$$
\begin{aligned}
\frac{d T}{d r} & =-\frac{M \omega^{2}}{L} r, \\
d T & =-\frac{M \omega^{2}}{L} r d r
\end{aligned}
$$

After integration we get:

$$
\begin{gathered}
\int_{T_{0}}^{T(r)} d T=-\int_{0}^{r} \frac{M \omega^{2}}{L} r d r, \\
T=-\frac{M \omega^{2}}{L} \frac{r^{2}}{2}+C,
\end{gathered}
$$

here, C is an integration constant and can be determined by considering the constraint that the force of tension T is zero at the tip of the rope, so $T=0$ at $r=L$ and we get:

$$
\begin{gathered}
C=\frac{M \omega^{2}}{2} L \\
T=-\frac{M \omega^{2}}{L} \frac{r^{2}}{2}+\frac{M \omega^{2}}{2} L=\frac{M \omega^{2}}{2 L}\left(L^{2}-r^{2}\right) \\
T=\frac{M \omega^{2}}{2 L}\left(L^{2}-r^{2}\right)
\end{gathered}
$$

Then, we can find the velocity of the transverse wave in the rope from the formula:

$$
v=\sqrt{\frac{T}{\mu^{\prime}}}
$$

here, T is the force of tension in the rope, $\mu=M / L$ is the linear mass density of the rope.

Substituting μ into the previous formula we can find the velocity of the transverse wave in the rope:

$$
\begin{gathered}
v=\sqrt{\frac{T}{\mu}=\sqrt{\frac{\frac{M \omega^{2}}{2 L}\left(L^{2}-r^{2}\right)}{\frac{M}{L}}}=\sqrt{\frac{\omega^{2}}{2}\left(L^{2}-r^{2}\right)}} \begin{array}{c}
\frac{d r}{d t}=\sqrt{\frac{\omega^{2}}{2}\left(L^{2}-r^{2}\right)}=\frac{\omega}{\sqrt{2}} \sqrt{\left(L^{2}-r^{2}\right)} \\
\frac{d r}{\sqrt{\left(L^{2}-r^{2}\right)}} \\
=\frac{\omega}{\sqrt{2}} d t \\
\int_{0}^{L} \frac{d r}{\sqrt{\left(L^{2}-r^{2}\right)}} \\
=\frac{\omega}{\sqrt{2}} \int_{0}^{t} d t \\
\arcsin 1
\end{array}=\frac{\omega}{\sqrt{2}} t
\end{gathered}
$$

$$
\begin{aligned}
\frac{\pi}{2} & =\frac{\omega}{\sqrt{2}} t \\
t & =\frac{\pi}{\sqrt{2} \cdot \omega}
\end{aligned}
$$

Answer:

$t=\frac{\pi}{\sqrt{2} \cdot \omega}$

