Answer on Question \#57842-Physics- Mechanics

A particle of mass m is accelerated along the positive x-direction by a constant force; It starts from rest at the origin of an inertial frame. A second reference frame moves with constant speed V0 along the negative x-direction; initially, the frame coincides with an inertial frame.
a) Find the velocity and position of the particle as a function of time in both reference frames
b) Find the work done by the force during a time interval t in both frames

Solution

a) The velocity of the particle in first frame:

$$
v=0+a t=a t .
$$

The position of the particle in first frame:

$$
s=\int_{0}^{t} v d t=\frac{a t^{2}}{2}
$$

The velocity of the particle in second frame:

$$
v^{\prime}=v_{0}+a t
$$

The position of the particle in second frame:

$$
s^{\prime}=\int_{0}^{t} v^{\prime} d t=v_{0} t+\frac{a t^{2}}{2}
$$

b) The work done by the force during a time interval tin the first frame is

$$
W=m a s=m a \frac{a t^{2}}{2}=\frac{m a^{2} t^{2}}{2}
$$

The work done by the force during a time interval t in the second frame is

$$
W^{\prime}=m a s^{\prime}=m a\left(v_{0} t+\frac{a t^{2}}{2}\right)=m a v_{o} t+\frac{m a^{2} t^{2}}{2}
$$

