Answer on Question \#57792, Physics - Molecular Physics | Thermodynamics

A student walking to class on a cold day ($\mathrm{T}=0 \mathrm{C}$) finds a silver ring with an inner diameter of $D=1.8 \mathrm{~cm}$. The silver has a coefficient of expansion of $a=18.7 \times 10^{\wedge}-6$
a) Input an expression for the rings inner diameter D_{h} when the student warms it up to their body temperature, T_{b}.
b) What is the change in diameter in mm if $\mathrm{T}_{b}=37 \mathrm{C}$

Solution:

a)

The hole in ring expands as if were filled with silver, so the change in the diameter is given by

$$
\Delta D=\alpha D_{0} \Delta T,
$$

where $\alpha=18.7 \times 10^{-6}$ is the coefficient of linear expansion, D_{0} is the original diameter, and ΔT is the change in temperature.
b)

Hence, the change in the ring's diameter is
$\Delta D=\alpha D_{0} \Delta T=\left(18.7 \cdot 10^{-6}\right)\left(1.8 \cdot 10^{-2} \mathrm{~m}\right)\left(37-0^{\circ} \mathrm{C}\right)=12.4542 \cdot 10^{-6} \mathrm{~m} \approx 0.0125 \mathrm{~mm}$

Answer: 0.0125 mm

