Answer on Question #57786, Physics / Mechanics | Relativity

A sailor pushes a 100.0 kg crate up a ramp that is 3.00 m high and 5.00 m long onto the deck of a ship. He exerts a 650.0 N force parallel to the ramp. What is the mechanical advantage of the ramp? What is the efficiency of the ramp? Your response should include all of your work and a freebody diagram.

Find: ΔF - ? η - ? **Given:** m=100 kg h=3 m l=5 m F=650 N g=9,8 N/kg

Solution:

Consider the forces, which acting on the crate.

Newton's Second Law:

 $\sum_{i=1}^{n} \overrightarrow{F_i} = m \vec{a}$ (1)

We believe that the body moves in straight lines and uniformly.

Because $\vec{a} = \vec{0}$ (2)

Write the vector sum of all forces:

 $\sum_{i=1}^{n} \overrightarrow{F_{i}} = \overrightarrow{F} + \overrightarrow{F_{\text{frict}}} + \overrightarrow{N} + m\overrightarrow{g} (3),$

where \overrightarrow{F} –traction force,

 $\overrightarrow{F_{frict}}$ – friction force,

 \vec{N} – reaction force,

mg – gravity (2) and (3) in (1): $\vec{F} + \vec{F}_{\text{fract}} + \vec{N} + m\vec{g} = \vec{0}$ (4) Find the projection of forces. OX: $F-F_{\rm frict}-mg\sin\alpha=0$ (5) OY: N – mg cos $\alpha = 0$ (6) Friction force (with a particular approach): $F_{\rm frict} = \mu N$ (7), where μ – coefficient of friction (μ < 1) Of (6) \Rightarrow N = mg cos α (8) (8) in (7): $F_{frict} = \mu mg \cos \alpha$ (9) Of (5) \Rightarrow F = F_{frict} + mg sin α (10) (9) in (10): $F = mg(\mu \cos \alpha + \sin \alpha)$ (11) Expression $(\mu \cos \alpha + \sin \alpha) < 1$ (12) Of (11) and (12) \Rightarrow F = mg($\mu \cos \alpha + \sin \alpha$) < mg (13) Of (13) \Rightarrow mechanical advantage of the ramp: $\Delta F = mg - F$ (14) $Of \Rightarrow \Delta F=330 N$ Efficiency of the ramp: $\eta = \frac{A_{helpful}}{A_{spent}} \times 100\%$ (15), where A_{helpful} – helpful work, A_{spent} – spent work Helpful work: $A_{helpful} = mgh$ (16), Spent work: $A_{spent} = Fl$ (17) (16) and (17) in (15): $\eta = \frac{\text{mgh}}{\text{Fl}} \times 100\%$ (18) Of (18) $\Rightarrow \eta = 90\%$ Answer: ΔF=330 N n=90%