Answer on Question \#57742, Physics / Mechanics | Relativity

A ball is thrown vertically into the air with an initial speed of $22.8 \mathrm{~m} / \mathrm{s}$. During its flight at one instant the ball was observed to be moving with a velocity of $-16.1 \mathrm{~m} / \mathrm{s}$. Calculate the elapsed time between these two velocities. Round your answer to three significant digits.

Solution:

Choose upward as the positive vertical direction. Then, after the ball is released, it is free falling object with acceleration $\mathrm{a}=-\mathrm{g}$. The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

The kinematic equation is

$$
v=v_{0}-g t
$$

From given,

$$
\begin{gathered}
v=-16.1 \mathrm{~m} / \mathrm{s} \\
v_{0}=22.8 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Thus, time between these two velocities

$$
t=\frac{v_{0}-v}{g}=\frac{22.8-(-16.1)}{9.8}=3.97 \mathrm{~s}
$$

Answer: 3.97 s

