Answer on Question\#57690-Physics - Mechanics - Relativity

2 blocks of masses $m_{1}=10 \mathrm{~kg}$ and $m_{2}=5 \mathrm{~kg}$ connected to each other by a massless in extensible string of length $L=0.3 \mathrm{~m}$ and placed along the diameter of a turn table coefficient of friction $\mu_{1}=0.5$ between surface of table and m_{1} and there is no friction between table and m_{2}. The table is rotating with $\omega=10 \frac{\mathrm{rad}}{\mathrm{s}}$ about the vertical axis. The mass m_{1} is at a distance of $l_{1}=0.124 \mathrm{~m}$ from centre .

1) If the masses are at rest, calculate the frictional force on m_{1}.
2) What should be the angular speed of table if the masses just start to slip?

Solution:

1) The centrifugal force acting on m_{1} is

$$
F_{1}=m_{1} \omega^{2} l
$$

The centrifugal force acting on m_{2} is

$$
F_{2}=m_{2} \omega^{2}(L-l)
$$

The frictional force on m_{1} is equal to the difference of the above forces:

$$
\begin{gathered}
F_{f}=\left|F_{2}-F_{1}\right|=\omega^{2}\left|m_{2}(L-l)-m_{1} l\right|= \\
=\left(10 \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2}|5 \mathrm{~kg} \cdot(0.3 \mathrm{~m}-0.124 \mathrm{~m})-10 \mathrm{~kg} \cdot 0.124 \mathrm{~m}|=36 \mathrm{~N}
\end{gathered}
$$

2) If masses start to slip, the force F_{f} must be equal to the force of kinetic friction $F_{f}^{k}=m_{1} g \mu_{1}$ acting on the mass m_{1} :

$$
\begin{gathered}
F_{f}^{k}=F_{f} \\
m_{1} g \mu_{1}=\omega^{2}\left|m_{2}(L-l)-m_{1} l\right|
\end{gathered}
$$

Thus,

$$
\omega=\sqrt{\frac{m_{1} g \mu_{1}}{\left|m_{2}(L-l)-m_{1} l\right|}}=\sqrt{\frac{10 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 0.5}{|5 \mathrm{~kg} \cdot(0.3 \mathrm{~m}-0.124 \mathrm{~m})-10 \mathrm{~kg} \cdot 0.124 \mathrm{~m}|}}=11.7 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

Answer:

1) 36 N
2) $11.7 \frac{\mathrm{rad}}{\mathrm{s}}$
