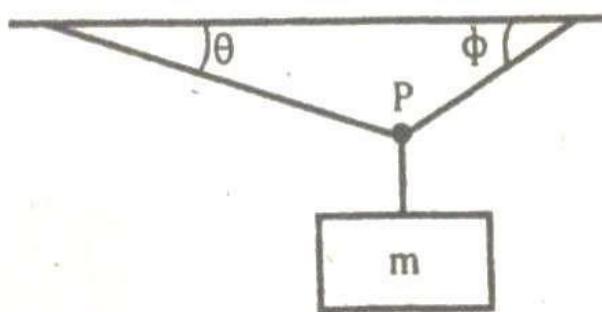


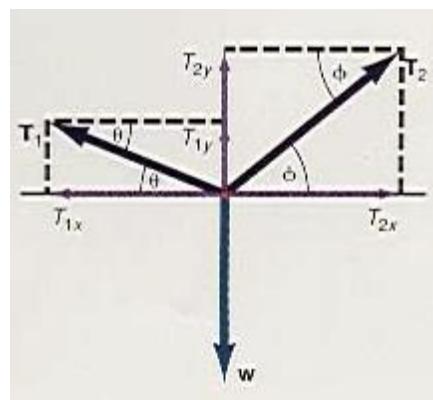
Answer on Question #57701, Physics / Mechanics | Relativity

A rope is hung at both ends from a horizontal beam, and a weight m is suspended from it. The left part of the rope exerts a force G at P , while the right part of the rope exerts a force H . Find the indicated quantities from the given data.

$$m = 50 \text{ kg}$$


$$\theta \text{ (theta)} = 17^\circ$$

$$\phi = 6^\circ$$


$$|G| = ?$$

$$|H| = ?$$

Solution:

All the forces that are acting are drawn in figure:

The weight is

$$w = mg = 50 \cdot 9.8 = 490 \text{ N}$$

The forces are resolved into their components, as shown in figure, where

$$T_{1x} = G \cos \theta$$

$$T_{1y} = G \sin \theta$$

$$T_{2x} = H \cos \phi$$

$$T_{2y} = H \sin \phi$$

The first condition of equilibrium must hold. Setting the forces in the x-direction to zero

$$\sum F_x = 0$$

gives

$$\begin{aligned}T_{2x} - T_{1x} &= 0 \\H \cos \phi &= G \cos \theta \quad (1)\end{aligned}$$

Taking all the forces in the y-direction and setting them equal to zero,

$$\begin{aligned}\sum F_y &= 0 \\T_{1y} + T_{2y} - w &= 0\end{aligned}$$

Using equations for the components, this becomes

$$G \sin \theta + H \sin \phi = w \quad (2)$$

From equation (1)

$$G = \frac{H \cos \phi}{\cos \theta}$$

If we substitute this equation for G into equation (2)

$$\frac{H \cos \phi}{\cos \theta} \sin \theta + H \sin \phi = w$$

$$H(\cos \phi \cdot \tan \theta + \sin \phi) = w$$

Hence,

$$H = \frac{w}{\cos \phi \cdot \tan \theta + \sin \phi} = \frac{490 \text{ N}}{\cos 6^\circ \cdot \tan 17^\circ + \sin 6^\circ} = 1199 \text{ N}$$

$$G = \frac{H \cos \phi}{\cos \theta} = \frac{1199 \cdot \cos 6^\circ}{\cos 17^\circ} = 1247 \text{ N}$$

Answer: $|G| = 1247 \text{ N}$; $|H| = 1199 \text{ N}$.