Answer on Question 57618, Physics, Other

Question:

A 70 kg person falls from a height of 5.0 m onto a concrete surface. The person lands stiff legged on his feet so that it only takes $0.0020 s$ for him to decelerate. What impulse does the person receive?

Answer:

By the definition of the impulse we have:

$$
J=m \Delta v=m v_{2}-m v_{1}=m\left(v_{2}-v_{1}\right),
$$

here, m is the mass of the person, v_{1} is the initial velocity of the person, v_{2} is the final velocity of the person (just before the landing).

We can find the velocity of the person just before the landing from the Law of Conservation of Energy:

$$
\begin{gathered}
P E=K E, \\
m g h=\frac{1}{2} m v_{2}^{2}, \\
v_{2}=\sqrt{2 g h}=\sqrt{2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 5.0 \mathrm{~m}}=9.9 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Then, substituting v_{2} into the first formula we get:

$$
J=m\left(v_{2}-v_{1}\right)=70 \mathrm{~kg} \cdot\left(9.9 \frac{\mathrm{~m}}{\mathrm{~s}}-0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=693 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

$J=693 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}$.

