Answer on Question 57617, Physics, Other

Question:

A rock is thrown straight down with an initial velocity of $10.5 \mathrm{~m} / \mathrm{s}$ from the Verrazano Narrows Bridge in New York City. The roadway of this bridge is 70 m above water. Take upwards to be the positive direction.
a) Calculate the displacement at a time of 1.0 s .
b) Calculate the velocity at a time of 1.0 s .
c) Calculate the displacement at a time of 1.5 s .
d) Calculate the velocity at a time of 1.5 s .
e) Calculate the displacement at a time of 2.0 s .
f) Calculate the velocity at a time of 2.0 s .
g) Calculate the displacement at a time of 2.5 s .
h) Calculate the velocity at a time of 2.5 s .

Solution:

a) In order to find the displacement we can use the formula:

$$
y=y_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

here, $y_{0}=0 \mathrm{~m}$ is the point of release, $v_{0}=-10.5 \mathrm{~m} / \mathrm{s}$ is the initial velocity, t is the time, $a=g=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to gravity.

Then, the displacement at the time of $1.0 s$ will be:

$$
\begin{aligned}
& y_{1}=y_{0}+v_{0} t_{1}+\frac{1}{2} a t_{1}^{2}=0 m+\left(-10.5 \frac{m}{s}\right) \cdot 1.0 s+\frac{1}{2} \cdot\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(1.0 \mathrm{~s})^{2}= \\
& \quad=-15.4 \mathrm{~m} .
\end{aligned}
$$

b) In order to find the velocity we can use the formula:

$$
v=v_{0}+a t,
$$

here, $v_{0}=-10.5 \mathrm{~m} / \mathrm{s}$ is the initial velocity, t is the time, $a=g=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to gravity.

Then, the velocity at the time of $1.0 s$ will be:

$$
v_{1}=v_{0}+a t_{1}=\left(-10.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 1.0 \mathrm{~s}=-20.3 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

c) The displacement at the time of $1.5 s$ will be:

$$
\begin{aligned}
& y_{2}=y_{0}+v_{0} t_{2}+\frac{1}{2} a t_{2}^{2}=0 m+\left(-10.5 \frac{m}{s}\right) \cdot 1.5 \mathrm{~s}+\frac{1}{2} \cdot\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(1.5 \mathrm{~s})^{2}= \\
& =-26.8 \mathrm{~m} .
\end{aligned}
$$

d) The velocity at the time of $1.5 s$ will be:

$$
v_{2}=v_{0}+a t_{2}=\left(-10.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 1.5 \mathrm{~s}=-25.2 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

e) The displacement at the time of 2.0 s will be:

$$
\begin{aligned}
y_{3}=y_{0}+ & v_{0} t_{3}+\frac{1}{2} a t_{3}^{2}=0 m+\left(-10.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \cdot 2.0 \mathrm{~s}+\frac{1}{2} \cdot\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(2.0 \mathrm{~s})^{2}= \\
& =-40.6 \mathrm{~m}
\end{aligned}
$$

f) The velocity at the time of $2.0 s$ will be:

$$
v_{3}=v_{0}+a t_{3}=\left(-10.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 2.0 \mathrm{~s}=-30.1 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

g) The displacement at the time of $2.5 s$ will be:

$$
\begin{aligned}
& y_{4}=y_{0}+v_{0} t_{4}+\frac{1}{2} a t_{4}^{2}=0 m+\left(-10.5 \frac{m}{s}\right) \cdot 2.5 s+\frac{1}{2} \cdot\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(2.5 \mathrm{~s})^{2}= \\
& =-56.9 \mathrm{~m}
\end{aligned}
$$

h) The velocity at the time of $2.5 s$ will be:

$$
v_{4}=v_{0}+a t_{4}=\left(-10.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 2.5 \mathrm{~s}=-35.0 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

a) $y_{1}=-15.4 \mathrm{~m}$,
b) $v_{1}=-20.3 \mathrm{~m} / \mathrm{s}$, d) $v_{2}=-25.2 \mathrm{~m} / \mathrm{s}$, f) $v_{3}=-30.1 \mathrm{~m} / \mathrm{s}$, h) $v_{4}=-35.0 \mathrm{~m} / \mathrm{s}$.
c) $y_{2}=-26.8 \mathrm{~m}$,
e) $y_{3}=-40.6 \mathrm{~m}$,
g) $y_{4}=-56.9 \mathrm{~m}$,

