Answer on Question 57616, Physics, Other

Question:

A ball is thrown straight up with an initial velocity of $19 \mathrm{~m} / \mathrm{s}$. Take the point of release $y_{0}=0$, and the upwards to be the positive direction.
a) Calculate the displacement at the time of 0.50 s .
b) Calculate the velocity at the time of 0.50 s .
c) Calculate the displacement at the time of 1.0 s .
d) Calculate the velocity at the time of 1.0 s .
e) Calculate the displacement at the time of 1.5 s .
f) Calculate the velocity at the time of 1.5 s .
g) Calculate the displacement at the time of 2.0 s .
h) Calculate the velocity at the time of 2.0 s .

Solution:

a) In order to find the displacement we can use the formula:

$$
y=y_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

here, $y_{0}=0 \mathrm{~m}$ is the point of release, v_{0} is the initial velocity, t is the time, $a=g=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to gravity.

Then, the displacement at the time of $0.50 s$ will be:

$$
\begin{aligned}
y_{1}=y_{0} & +v_{0} t_{1}+\frac{1}{2} a t_{1}^{2}=0 m+19 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 0.50 \mathrm{~s}+\frac{1}{2} \cdot\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(0.50 \mathrm{~s})^{2}= \\
& =8.28 \mathrm{~m} .
\end{aligned}
$$

b) In order to find the velocity we can use the formula:

$$
v=v_{0}+a t,
$$

here, v_{0} is the initial velocity, t is the time, $a=g=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to gravity. Then, the velocity at the time of $0.50 s$ will be:

$$
v_{1}=v_{0}+a t_{1}=19 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 0.50 \mathrm{~s}=14.1 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

c) The displacement at the time of $1.0 s$ will be:

$$
\begin{aligned}
& y_{2}=y_{0}+v_{0} t_{2}+\frac{1}{2} a t_{2}^{2}=0 m+19 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1.0 \mathrm{~s}+\frac{1}{2} \cdot\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(1.0 \mathrm{~s})^{2}= \\
&= 14.1 \mathrm{~m} .
\end{aligned}
$$

d) The velocity at the time of $1.0 s$ will be:

$$
v_{2}=v_{0}+a t_{2}=19 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 1.0 \mathrm{~s}=9.2 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

e) The displacement at the time of $1.5 s$ will be:

$$
y_{3}=y_{0}+v_{0} t_{3}+\frac{1}{2} a t_{3}^{2}=0 m+19 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1.5 \mathrm{~s}+\frac{1}{2} \cdot\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(1.5 \mathrm{~s})^{2}=17.5 \mathrm{~m} .
$$

f) The velocity at the time of $1.5 s$ will be:

$$
v_{3}=v_{0}+a t_{3}=19 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 1.5 \mathrm{~s}=4.3 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

g) The displacement at the time of $2.0 s$ will be:

$$
y_{4}=y_{0}+v_{0} t_{4}+\frac{1}{2} a t_{4}^{2}=0 m+19 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 2.0 \mathrm{~s}+\frac{1}{2} \cdot\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(2.0 \mathrm{~s})^{2}=18.4 \mathrm{~m}
$$

h) The velocity at the time of $2.0 s$ will be:

$$
v_{4}=v_{0}+a t_{4}=19 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 2.0 \mathrm{~s}=-0.6 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

The sign minus indicates that the ball is begin to fall.

Answer:

a) $y_{1}=8.28 \mathrm{~m}$,
b) $v_{1}=14.1 \mathrm{~m} / \mathrm{s}$,
c) $y_{2}=14.1 \mathrm{~m}$,
d) $v_{2}=9.2 \mathrm{~m} / \mathrm{s}$,
e) $y_{3}=17.5 \mathrm{~m}$,
f) $v_{3}=4.3 \mathrm{~m} / \mathrm{s}$,
g) $y_{4}=18.4 \mathrm{~m}$,
h) $v_{4}=0.6 \mathrm{~m} / \mathrm{s}$.

