

Answer on Question #57578, Physics / Mechanics | Relativity

If Photon Energy is $6.6 \times 10^{20} \text{ J}$, what is true about EM radiation? (useful quantities: $h=6.6 \times 10^{-34} \text{ J s}$, and $c=3.0 \times 10^8 \text{ m/s}$) How did you come up with your answer?

Find: $\lambda - ?$

Given:

$$E=6.6 \times 10^{20} \text{ J}$$

$$h=6.6 \times 10^{-34} \text{ J s}$$

$$c=3 \times 10^8 \text{ m/s}$$

Solution:

The energy of Photon:

$$E = hu \quad (1),$$

where h – Planck's constant,

u – frequency of electromagnetic radiation

The wave length of the electromagnetic radiation:

$$\lambda = cT \quad (2),$$

where c – speed of light,

T – period of oscillation

Period of oscillation and frequency electromagnetic radiation are related of ratio:

$$T = \frac{1}{u} \quad (3)$$

$$(3) \text{ in } (2): \lambda = \frac{c}{u} \quad (4)$$

$$\text{Of } (4) \Rightarrow u = \frac{c}{\lambda} \quad (5)$$

$$(5) \text{ in } (1): E = \frac{hc}{\lambda} \quad (6)$$

$$\text{Of } (6) \Rightarrow \lambda = \frac{hc}{E} \quad (7)$$

$$\text{Of } (7) \Rightarrow \lambda = 3 \times 10^{-46} \text{ m}$$

The smallest wave length have γ - radiation ($\lambda = 10^{-10} \text{ m} - 10^{-13} \text{ m}$).

Electromagnetic radiation with length wave $\lambda = 3 \times 10^{-46} \text{ m}$ does not exist.

Answer:

It is not true.