

Answer on Question #57537-Physics – Molecular Physics | Thermodynamics

A closed vessel having capacity 200 mL is filled with hydrogen gas at STP. Calculate:

- (i) Number of moles of hydrogen gas filled in the vessel.
- (ii) Pressure of hydrogen gas in the vessel at 273°C.
- (iii) Root mean square velocity of hydrogen gas at STP.
- (iv) The value of C_p and C_v for hydrogen gas.

Solution

(i) At standard temperature and pressure (STP) one mole of hydrogen gas occupies 22.4L. Then, we can compose a proportion (because the vessel is filled with hydrogen gas at STP)

$$1 \text{ mole of } H_2 - 22.4L$$

$$n \text{ moles of } H_2 - 200 \text{ mL}$$

From the proportion we obtain

$$n = \frac{200 \cdot 10^{-3} \text{ L} \cdot 1 \text{ mole}}{22.4 \text{ L}} = 0.0089 \text{ mol.}$$

(ii) We can calculate the pressure of hydrogen gas in the vessel at 273°C from the ideal gas law

$$PV = nRT,$$

here, P is the pressure of the gas, V is the volume of the gas, n is the amount of substance of the gas which is measured in moles, $R = 8.314 \frac{(m^3 \cdot Pa)}{(mol \cdot K)}$ is the universal gas constant, T is the temperature of the gas.

Therefore, from the formula we get

$$P = \frac{nRT}{V} = \frac{0.0089 \text{ mol} \cdot 8.314 \frac{(m^3 \cdot Pa)}{(mol \cdot K)} \cdot (273 + 273.15 \text{ K})}{200 \cdot 10^{-6} \text{ m}^3} = 2.02 \cdot 10^5 \text{ Pa.}$$

(iii) By the definition, the root mean square velocity is given by formula

$$c_{rms} = \sqrt{\frac{3kT}{m}}$$

here, $k = 1.38 \cdot 10^{-23} \frac{J}{K}$ is the Boltzmann constant, $T = 273K$ (standard temperature), $m = 3.347 \cdot 10^{-27} \text{ kg}$ is the mass of the molecule of the hydrogen gas.

Then, the root mean square velocity of hydrogen gas at STP will be

$$c_{rms} = \sqrt{\frac{3 \cdot 1.38 \cdot 10^{-23} \frac{J}{K} \cdot 273K}{3.347 \cdot 10^{-27} \text{ kg}}} = 1837.6 \frac{\text{m}}{\text{s.}}$$

(iv) Since H_2 is diatomic gas, the molar heat capacity at constant volume C_v will be

$$C_v = \frac{5}{2}R = \frac{5}{2}8.314 \frac{J}{(mol \cdot K)} = 20.78 \frac{J}{mol \cdot K}$$

By the definition, the molar heat capacity at constant pressure will be

$$C_p = C_v + R = \frac{5}{2}R + R = \frac{7}{2}R = \frac{7}{2} \cdot 8.314 \frac{J}{mol \cdot K} = 29.09 \frac{J}{mol \cdot K}$$

<https://www.AssignmentExpert.com>