Answer on Question \#57463-Physics - Mechanics | Relativity

The velocity of a body at a given instant t is given by $v=3 i+(4-2 t) j$.
(i) What is the magnitude and direction of the initial velocity of the body?
(ii) At what instant will the body hit the x-axis again?
(iii) What is the shape of the trajectory? why?
(iv) What is the maximum distance moved by the body along the y-axis?

Solution

(A) Initial velocity is when $t=0$.

Substituting this into the equation above:

$$
\overline{\mathrm{V}}(0)=3 \overline{\mathrm{\imath}}+(4-2 \cdot 0) \overline{\mathrm{\jmath}}=3 \overline{\mathrm{\imath}}+4 \overline{\mathrm{\jmath}}
$$

The magnitude of the initial velocity of the body is

$$
V=\sqrt{3^{2}+4^{2}}=5
$$

The direction of the initial velocity of the body is

$$
\theta=\tan ^{-1} \frac{4}{3}=53^{\circ} \text { with the } x \text { axis. }
$$

(B) The body will hit x axis again when $y=0$.

$$
y(t)=\int_{0}^{t}(4-2 s) \mathrm{ds}=4 t-2 \frac{t^{2}}{2}=4 t-t^{2}=t(4-t)
$$

The time will be

$$
t=4
$$

(C) $y=4 t-t^{2}$
$x=3 t \rightarrow t=\frac{x}{3}$.

$$
y=4\left(\frac{x}{3}\right)-\left(\frac{x}{3}\right)^{2}=\frac{4}{3} x-\frac{1}{9} x^{2}
$$

This is equation of parabola.
(D) Maximum distance covered in y axis will be at

$$
\begin{gathered}
\frac{d y}{d t}=4-2 t=0 \rightarrow t=2 \\
y_{\max }=2(4-2)=4
\end{gathered}
$$

https://www.AssignmentExpert.com

