Answer on Question 57433, Physics, Atomic and Nuclear Physics

Question:

Find the apparent weight of a 18 kilogram lead block submerged into the dead sea.

Solution:

Let's find the volume of the lead block:

$$
V_{\text {block }}=\frac{m_{\text {block }}}{\rho_{\text {lead }}}=\frac{18 \mathrm{~kg}}{11340 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=0.0016 \mathrm{~m}^{3} .
$$

Then the mass of water dicplaced by the lead block would be:

$$
m_{\text {water }}=\rho_{\text {dead sea }} V_{\text {block }}=0.0016 \mathrm{~m}^{3} \cdot 1240 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=1.98 \mathrm{~kg} .
$$

So, the apparent mass of the lead block in water will be:

$$
m_{\text {app }}=m_{\text {block }}-m_{\text {water }}=18 \mathrm{~kg}-1.98 \mathrm{~kg}=16.02 \mathrm{~kg} .
$$

Finally, we can calculate the apparent weight of the lead block:

$$
W_{a p p}=m_{a p p} g=16.02 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=157 \mathrm{~N} .
$$

Answer:
 $W_{a p p}=157 N$.

