Answer on Question 57424, Physics, Other

Question:

120 atoms: 40 have decayed, what is the half-life? What is it in years?

Solution:

Given: beginning amount of atoms - 120 atoms; 40 have decayed means the ending amount of atoms is $120-40=80$ atoms.

Let's first calculate number of half-lives, n from the formula:

$$
\begin{aligned}
& \text { Ending Amount }=\frac{\text { Beginning Amount }}{2^{n}}, \\
& \qquad\left(\frac{1}{2}\right)^{n}=\frac{\text { Ending Amount }}{\text { Beginning Amount }}=\frac{80}{120} .
\end{aligned}
$$

Let's take the \log of both sides of equation:

$$
\begin{gathered}
\log \left(\frac{1}{2}\right)^{n}=\log \left(\frac{80}{120}\right), \\
n \cdot \log (0.5)=\log \left(\frac{80}{120}\right), \\
n=\log \left(\frac{80}{120}\right) / \log (0.5)=0.585 .
\end{gathered}
$$

In order to find the half-life we must know the elapsed time. We can find it from the formula:

$$
\begin{aligned}
& \text { Beginning Amount } \cdot\left(\frac{1}{2}\right)^{\left(\frac{\text { Elaps.time }}{n}\right)}=\text { Ending Amount, } \\
& 120 \cdot\left(\frac{1}{2}\right)^{\left(\frac{\text { Elaps.time }}{0.585}\right)}=80, \\
& \left(\frac{1}{2}\right)^{\left(\frac{\text { Elaps.time }}{0.585}\right)}=\frac{80}{120 .}
\end{aligned}
$$

Again take the \log of both sides of equation:

$$
\begin{gathered}
\log \left(\frac{1}{2}\right)^{\left(\frac{\text { Elaps.time }}{0.585}\right)}=\log \left(\frac{80}{120}\right), \\
\log (0.5) \cdot\left(\frac{\text { Elaps.time }}{0.585}\right)=\log \left(\frac{80}{120}\right), \\
\text { Elaps.time }=0.585 \cdot \frac{\log \left(\frac{80}{120}\right)}{\log (0.5)}=0.342 \text { year. }
\end{gathered}
$$

Then we can find the half-life from the formula:
$T_{1 / 2}=\frac{\text { Elaps.time } \cdot \log 2}{\log \left(\frac{\text { Beginning Amount }}{\text { Ending Amount }}\right)}=\frac{0.342 \text { year } \cdot \log 2}{\log \left(\frac{80}{120}\right)}=0.584$ year.
Answer:
$T_{1 / 2}=0.584 y e a r$.

