

Answer on Question #57385, Physics / Other

A hollow sphere floats in a liquid just submerged. What fraction of the volume of the sphere remains submerged in the liquid after its temperature is brought down to dt . The coefficient of cubical expansion for solid and liquid are γ_1 and γ_2 .

Solution:

The volume of sphere increase to

$$V = V_0(1 + \gamma_1 dt)$$

The volume of submerged part of sphere increase to

$$v = v_0(1 + \gamma_2 dt)$$

Dividing equations we have

$$\frac{V/v}{V_0/v_0} = \frac{1 + \gamma_1 dt}{1 + \gamma_2 dt}$$

$$\frac{V}{v} \frac{v_0}{V_0} = \frac{1 + \gamma_1 dt}{1 + \gamma_2 dt}$$

Given, a fraction of initially submerged is

$$k_0 = \frac{v_0}{V_0}$$

The fraction submerged after heating is

$$k = \frac{v}{V} = k_0 \frac{1 + \gamma_2 dt}{1 + \gamma_1 dt}$$

Answer:

The fraction of the volume of sphere submerged in liquid changes by a factor

$$\frac{1 + \gamma_2 dt}{1 + \gamma_1 dt}$$