Answer on Question \#57195, Physics / Electromagnetism

An electron moves in a circular orbit with a uniform speed v. It produces a magnetic field B at the center of the circle. What is the radius of the circle proportional to?

Solution

Electron with charge e moves with velocity v will experience a Lorentz force

$$
\overrightarrow{\mathrm{F}}=\mathrm{ev} \overrightarrow{\mathrm{~B}} .
$$

At the same time centripetal force F acting on an electron moving along a path with radius of curvature r, is given by:

$$
\begin{gathered}
F=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \\
\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\mathrm{evB} .
\end{gathered}
$$

The radius of the circle equals to

$$
\mathrm{r}=\frac{\mathrm{mv}}{\mathrm{eB}}
$$

Answer: $r=\frac{m v}{e B}$

