

Answer on Question 57183, Physics, Other

Question:

A person with external body temperature 35°C is present in a room at temperature 25°C . Assuming the emissivity of the body of the person to be 0.5 and surface area of the body of the person as 2.0m^2 , calculate the radiant power of the person.

Solution:

The person radiates energy at a rate:

$$P = \frac{Q}{\Delta t} = \varepsilon\sigma A(T_1^4 - T_2^4), T_1 > T_2$$

here, P is the radiant power of the person, $\varepsilon = 0.5$ emissivity of the body of the person, $\sigma = 5.672 \cdot 10^{-8} \frac{J}{s \cdot m^2 \cdot K^4}$ is the Stefan – Boltzmann constant, $A = 2.0\text{m}^2$ is the surface area of the body of the person and T_1 is the temperature of the person, and T_2 is the temperature of the surroundings.

Then, the radiant power of the person will be:

$$\begin{aligned} P &= \varepsilon\sigma A(T_1^4 - T_2^4) = \\ &= 0.5 \cdot 5.672 \cdot 10^{-8} \frac{J}{s \cdot m^2 \cdot K^4} \cdot 2.0\text{m}^2 \\ &\cdot ((35 + 273.15K)^4 - (25 + 273.15K)^4) = 63.2W. \end{aligned}$$

Answer:

$$P = 63.2W.$$