Answer on Question \#57184, Physics / Optics

A planoconvex lens is made of glass of refractive index 1.5. The radius of curvature of its spherical surface is 40 cm . At what distance from the lens will a parallel beam of light will get focussed? Draw a neat, clear labelled ray diagram to show image formation from the lens. What will be the nature and power of a combination of two such lenses kept with their (i) plane surfaces in contact (ii) spherical surfaces in contact.

Solution:

For a lens in air, the power $1 / f$ is then given by

$$
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]
$$

The radii of curvature here are measured according to the Cartesian sign convention.
In our case,

$$
R_{1}=40 \mathrm{~cm}, \quad R_{2}=\infty
$$

Thus,

$$
f=\frac{R_{1}}{n-1}=\frac{40}{1.5-1}=80 \mathrm{~cm}
$$

A parallel beam of light will be focused at 80 cm from the lens.

(i)

For a double convex lens the radius R_{1} is positive since it is measured from the front surface and extends right to the center of curvature. The radius R_{2} is negative since it extends left from the second surface.

$$
\begin{gathered}
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]=(1.5-1)\left[\frac{1}{0.40}+\frac{1}{0.40}\right]=2.5 \mathrm{D} \\
1 / \mathrm{f}>0 \text { and this lens will be converging. }
\end{gathered}
$$

(ii)

When spherical surfaces in contact the combined focal length f of the lenses is given by

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1}{0.8}+\frac{1}{0.8}=2.5 \mathrm{D}
$$

$1 / \mathrm{f}>0$ and this lens will be converging.

