Answer on Question 57164, Physics, Other

Question:

A closed vessel having capacity 200 mL is filled with hydrogen gas at STP. Calculate:
(i) Number of moles of hydrogen gas filled in the vessel.
(ii) Pressure of hydrogen gas in the vessel at $273^{\circ} \mathrm{C}$.
(iii) Root mean square velocity of hydrogen gas at STP.
(iv) The value of C_{p} and C_{v} for hydrogen gas.

Solution:

(i) At standard temperature and pressure (STP) one mole of hydrogen gas occupies 22.4 L . Then, we can compose a proportion (because the vessel is filled with hydrogen gas at STP):

$$
\begin{gathered}
1 \text { mole of } \mathrm{H}_{2}-22.4 L \\
n \text { moles of } \mathrm{H}_{2}-200 \mathrm{~mL}
\end{gathered}
$$

From the proportion we obtain:

$$
n=\frac{200 \cdot 10^{-3} \mathrm{~L} \cdot 1 \mathrm{~mole}}{22.4 \mathrm{~L}}=0.0089 \mathrm{~mol} .
$$

(ii) We can calculate the pressure of hydrogen gas in the vessel at $273^{\circ} \mathrm{C}$ from the ideal gas law:

$$
P V=n R T
$$

here, P is the pressure of the gas, V is the volume of the gas, n is the amount of substance of the gas which is measured in moles, $R=8.314 \frac{\mathrm{~m}^{3} \cdot \mathrm{~Pa}}{\mathrm{~mol} \cdot \mathrm{~K}}$ is the universal gas constant, T is the temperature of the gas.

Therefore, from the formula we get:

$$
P=\frac{n R T}{V}=\frac{0.0089 \mathrm{~mol} \cdot 8.314 \frac{\mathrm{~m}^{3} \cdot \mathrm{~Pa}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot(273+273.15 \mathrm{~K})}{200 \cdot 10^{-6} \mathrm{~m}^{3}}=2.02 \cdot 10^{5} \mathrm{~Pa} .
$$

(iii) By the definition, the root mean square velocity is given by formula:

$$
c_{r m s}=\sqrt{\frac{3 k T}{m}}
$$

here, $k=1.38 \cdot 10^{-23} \frac{J}{K}$ is the Boltzmann constant, $T=273 \mathrm{~K}$ (standard temperature), $m=3.347 \cdot 10^{-27} \mathrm{~kg}$ is the mass of the molecule of the hydrogen gas.

Then, the root mean square velocity of hydrogen gas at STP will be:

$$
c_{r m s}=\sqrt{\frac{3 k T}{m}}=\sqrt{\frac{3 \cdot 1.38 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}} \cdot 273 \mathrm{~K}}{3.347 \cdot 10^{-27} \mathrm{~kg}}}=1837.6 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

(iv) Since H_{2} is diatomic gas, the molar heat capacity at constant volume C_{v} will be:

$$
C_{v}=\frac{5}{2} R=\frac{5}{2} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}=20.78 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} .
$$

By the definition, the molar heat capacity at constant pressure will be:

$$
C_{p}=C_{v}+R=\frac{5}{2} R+R=\frac{7}{2} R=\frac{7}{2} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}=29.09 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} .
$$

Answer:

(i) $n=0.0089 \mathrm{~mol}$.
(ii) $P=2.02 \cdot 10^{5} P a$.
(iii) $c_{r m s}=1837.6 \frac{\mathrm{~m}}{\mathrm{~s}}$.
(iv) $C_{v}=20.78 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$,

$$
C_{p}=29.09 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} .
$$

