Answer on Question 57145, Physics, Molecular Physics | Thermodynamics Question:

An ideal gas is expanding such that $P T=$ const. The coefficient of volume expansion of the gas is
a) $1 / T$
b) $2 / T$
c) $3 / T$
d) $4 / T$

Solution:

We can find the coefficient of volume expansion of the gas from the formula:

$$
\gamma=\frac{1}{V} \frac{d V}{d T} .
$$

Let's write the ideal gas law:

$$
P V=n R T .
$$

From this formula we can find P :

$$
P=\frac{n R T}{V} .
$$

Therefore, substituting P into the formula $P T=$ const we get:

$$
\begin{gathered}
\frac{n R T}{V} T=\text { const } \\
n R T^{2}=\text { const } \cdot V
\end{gathered}
$$

Let's differentiate the last equation:

$$
\begin{aligned}
2 n R T d T & =\text { const } \cdot d V \\
\frac{d V}{d T} & =\frac{2 n R T}{\text { const }} .
\end{aligned}
$$

Then, we can find the coefficient of volume expansion (from the ideal gas law we obtain $V=\frac{n R T}{P}$ and $P T=$ const $)$:

$$
\gamma=\frac{1}{V} \frac{d V}{d T}=\frac{2 n R T}{\operatorname{const} \cdot V}=\frac{2 n R T}{P T \cdot \frac{n R T}{P}}=\frac{2}{T} .
$$

Answer:

b) $\gamma=2 / T$.

