Answer on Question \#57122, Physics / Molecular Physics | Thermodynamics

10/ Calculate the change in entropy of gases in the following cases:
a) A 3.0 mol sample of an ideal gas expands reversibly and isothermally at 350 K until its volume doubled.
b) The temperature of 1.0 mol of an ideal monatomic gas is raised reversibly from 200 K to 300 K, with its volume kept constant.

Solution:

a) For the expansion (or compression) of an ideal gas from an initial volume V_{0} to a final volume V at any constant temperature, the change in entropy is given by:

$$
\Delta S=n R \ln \left(\frac{V}{V_{0}}\right)
$$

Here n is the number of moles of gas and R is the ideal gas constant.

$$
\Delta S=3.0 \cdot 8.31 \cdot \ln (2)=17.28 \frac{J}{K}
$$

b) For heating or cooling of any system (gas, liquid or solid) at constant volume from an initial temperature T_{0} to a final temperature T, the entropy change is

$$
\Delta S=n C_{V} \ln \left(\frac{T}{T_{0}}\right)
$$

where the constant-volume heat capacity C_{v} is constant and there is no phase change. In the case of a monatomic gas

$$
C_{V}=\frac{3}{2} R
$$

where R is the ideal gas constant
Thus,

$$
\Delta S=\frac{3}{2} n R \ln \left(\frac{T}{T_{0}}\right)=\frac{3}{2} \cdot 1.0 \cdot 8.31 \cdot \ln \left(\frac{300}{200}\right)=5.05 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

Answer: a) $17.28 \frac{\mathrm{~J}}{\mathrm{~K}}$; b) $5.05 \frac{\mathrm{~J}}{\mathrm{~K}}$

