Answer on Question\#56965 - Physics - Mechanics - Relativity

A weightless rod is acted upon by parallel force of $F_{1}=4 \mathrm{~N}$ and $F_{2}=2 \mathrm{~N}$ at the ends. Length of rod is $L=3 \mathrm{~m}$. To keep rod in equilibrium $F=6 \mathrm{~N}$ should be applied where?

Solution:

According to the principle of moments

$$
F_{2}(L-x)=F_{1} x
$$

Thus

$$
x=\frac{F_{2}}{F_{1}+F_{2}} L=\frac{2 \mathrm{~N}}{4 \mathrm{~N}+2 \mathrm{~N}} 3 \mathrm{~m}=1 \mathrm{~m}
$$

Answer: 1 m from the end where the force F_{1} is applied.

