Answer on Question 56960, Physics, Mechanics, Relativity

Question:

A turntable with a moment of inertia of $0.011 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ rotates freely at $3.1 \mathrm{rad} / \mathrm{s}$. A circular disk of mass 400 g and diameter of 22 cm , and initially not rotating, slips down a spindle and lands on the turntable.
a) Find the new angular speed ($\mathrm{rad} / \mathrm{s}$).
b) What is the change in kinetic energy?

Solution:

a) We can find the new angular speed of the turntable from the law of conservation of angular momentum:

$$
I_{1} \omega_{1}+I_{2} \omega_{2}=\left(I_{1}+I_{2}\right) \omega,
$$

here, $I_{1} \omega_{1}$ is the initial angular momentum of the turntable, $I_{2} \omega_{2}$ is the initial angular momentum of the circular disk (since the circular disk initially not rotating, $I_{2} \omega_{2}=$ $\left.0 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}}\right), I_{1}, I_{2}$ are the moments of inertia of the turntable and circular disk, respectively, ω_{1}, ω_{2} are the angular speeds of the turntable and circular disk, respectively and ω is the new angular speed.

By the definition of the moment of inertia of the circular disk we have:

$$
I_{2}=\frac{1}{2} m_{2} r^{2}=\frac{1}{2} \cdot 0.4 \mathrm{~kg} \cdot(0.11 \mathrm{~m})^{2}=2.42 \cdot 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

Then, we can find the new angular speed of the turntable:

$$
\begin{gathered}
\omega=\frac{I_{1} \omega_{1}+I_{2} \omega_{2}}{\left(I_{1}+I_{2}\right)}=\frac{0.011 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 3.1 \frac{\mathrm{rad}}{\mathrm{~s}}+2.42 \cdot 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 0 \frac{\mathrm{rad}}{\mathrm{~s}}}{0.011 \mathrm{~kg} \cdot \mathrm{~m}^{2}+2.42 \cdot 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}}= \\
=\frac{0.0341 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \frac{\mathrm{rad}}{\mathrm{~s}}}{0.01342 \mathrm{~kg} \cdot \mathrm{~m}^{2}}=2.54 \frac{\mathrm{rad}}{\mathrm{~s}} .
\end{gathered}
$$

b) Let's write the initial kinetic energy of the turntable and the circular disk:

$$
K E_{1}=\frac{1}{2} I_{1} \omega_{1}^{2}=\frac{1}{2} \cdot 0.011 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot\left(3.1 \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2}=0.053 \mathrm{~J} .
$$

$$
K E_{2}=\frac{1}{2} I_{2} \omega_{2}^{2}=\frac{1}{2} \cdot 2.42 \cdot 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot\left(0 \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2}=0 \mathrm{~J} .
$$

The final kinetic energy after the circular disk lands on the turntable will be:

$$
\begin{aligned}
K E_{\text {final }}=\frac{1}{2} & I_{1} \omega^{2}+\frac{1}{2} I_{2} \omega^{2}=\frac{1}{2}\left(I_{1}+I_{2}\right) \omega^{2}=\frac{1}{2}\left(I_{1}+I_{2}\right) \cdot \frac{\left(I_{1} \omega_{1}+I_{2} \omega_{2}\right)^{2}}{\left(I_{1}+I_{2}\right)^{2}} \\
& =\frac{1}{2} \frac{\left(I_{1} \omega_{1}+I_{2} \omega_{2}\right)^{2}}{\left(I_{1}+I_{2}\right)}=\frac{\left(0.011 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 3.1 \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2}}{2 \cdot\left(0.011 \mathrm{~kg} \cdot \mathrm{~m}^{2}+2.42 \cdot 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)}= \\
& =0.043 \mathrm{~J} .
\end{aligned}
$$

Then, the change in kinetic energy will be:

$$
\Delta K E=K E_{\text {final }}-\left(K E_{1}+K E_{2}\right)=0.043 \mathrm{~J}-0.053 \mathrm{~J}=-0.01 \mathrm{~J}
$$

Sign minus means that we have the loss in kinetic energy.
Answer:
a) $\omega=2.54 \frac{\mathrm{rad}}{\mathrm{s}}$.
b) $\Delta K E=0.01 \mathrm{~J}$.

