Answer on Question\#56940-Physics - Mechanics | Relativity

Two bodies of same mass tied with an inelastic string of length l lie together. One of them is projected vertically upwards with velocity $v_{i}=\sqrt{6 g l}$. Find the maximum height up to which the centre of mass of system of the two masses rises.

Solution:

Applying the law of conservation of energy to the initial moment and the moment when the first body reaches the height l we obtain:

$$
\frac{m v_{i}^{2}}{2}=\frac{m v^{2}}{2}+m g l,
$$

Where v - is the speed of the first body at height l.
Thus

$$
v=\sqrt{v_{i}^{2}-2 g l}=\sqrt{6 g l-2 g l}=2 \sqrt{g l}
$$

At this moment both bodies start to move as one piece with its centre of mass at height $l / 2$. According to the law of conservation of energy the new speed of the system (mass is twice the mass of one body) is given by (the process is inelastic)

$$
v^{\prime}=\frac{v}{2}=\sqrt{g l}
$$

After this moment the centre of mass of the system is elevated by the height Δh, which is given by

$$
\Delta h=\frac{v^{\prime 2}}{2 g}=\frac{g l}{2 g}=\frac{l}{2}
$$

Thus the maximum elevation of the centre of mass is

$$
h_{\max }=\frac{l}{2}+\Delta h=\frac{l}{2}+\frac{l}{2}=l
$$

Answer: l.

