

Answer on Question #56897, Physics / Molecular Physics | Thermodynamics

A 28.45 g metal specimen of gold and 25.75 g metal specimen of iron, each at a temperature of 100.0 °C were dropped into 570.0 mL of water at a temperature of 17.70 °C. The molar heat capacity of iron and gold are $25.19 \text{ J mol}^{-1} \text{ °C}^{-1}$ and $25.41 \text{ J mol}^{-1} \text{ °C}^{-1}$ respectively. Assume the density of water to be 1.00g/mL, what is the final temperature of the water and pieces of metals?

Solution:

This problem can be summarized thusly:

$$q_{\text{lost by gold}} + q_{\text{lost by iron}} = q_{\text{gained by water}}$$

$$c_{\text{gold}}m_{\text{gold}}(T_1 - T_x) + c_{\text{iron}}m_{\text{iron}}(T_1 - T_x) = c_{\text{water}}m_{\text{water}}(T_x - T_2)$$

The specific heat of water is = 4.187 joule/gram.

The molar mass of gold $M_{\text{Au}} = 196.97 \text{ g/mol}$

The molar mass of iron $M_{\text{Fe}} = 55.8450 \text{ g/mol}$

Thus,

$$c_{\text{gold}} = \frac{25.19}{196.97} = 0.128 \frac{\text{J}}{\text{mol °C}}$$
$$c_{\text{iron}} = \frac{25.41}{55.8450} = 0.455 \frac{\text{J}}{\text{mol °C}}$$

Here are what the several of the terms mean:

$(25.75 \text{ g} / 55.845 \text{ g/mol}) \rightarrow$ moles of Fe

$(28.45 \text{ g} / 196.97 \text{ g/mol}) \rightarrow$ moles of Au

$(100.0 - x) \rightarrow$ temp change of Fe and Au (they each start at 100 °C and go down to the final temperature, symbolized by 'x')

$(x - 17.70) \rightarrow$ temp change of water

Solve for x, which is the final temperature.

Therefore:

$$0.128 \cdot 28.45 \cdot (100 - x) + 0.455 \cdot 25.75 \cdot (100 - x) = 570 \cdot 4.187 \cdot (x - 17.70)$$

$$15.3579 \cdot (100 - x) = 2386.59 \cdot (x - 17.7)$$

$$43778.4 - 2401.95 x = 0$$

$$x = 18.2262 \approx 18.2^{\circ}\text{C}$$

Answer: 18.2°C