

Answer on Question 56765, Physics, Other

Question:

Suppose that at room temperature, a certain aluminum bar is 1.0000m long. The bar gets longer when its temperature is raised. The length L of the bar obeys the following relation: $L = 1.0000 + 2.4 \cdot 10^{-5}T$, where T is the number of degrees Celsius above room temperature. What is the change of the bar's length if the temperature is raised to 17.2°C above room temperature?

Solution:

Let's find the final length of the bar when the temperature is raised to 17.2°C above room temperature:

$$L_f = 1.0000\text{m} + 2.4 \cdot 10^{-5} \frac{1}{^\circ\text{C}} \cdot 1.000\text{m} \cdot 17.2^\circ\text{C} = 1.00041\text{m}.$$

Then, the change of the bar's length will be:

$$\Delta L = L_f - L_i = 1.00041\text{m} - 1.0000\text{m} = 0.00041\text{m} = 4.1 \cdot 10^{-4}\text{m}.$$

Answer:

The change of the bar's length if the temperature is raised to 17.2°C above room temperature will be $\Delta L = 4.1 \cdot 10^{-4}\text{m}$.