Answer on question \#56694, Physics / Other

Question A bike coasts up a long hill. The hill has an incline of 38 degrees. The mass of the bike and rider is 129 kg . If the bike starts up the hill at a velocity of $10 \mathrm{~m} / \mathrm{s}$, how far will the rider go up the hill before stopping? The coefficient of kinetic friction is . 30 .

Solution Let us find deceleration

$$
\begin{aligned}
a=\frac{F}{m} & =\frac{m g \sin \alpha+\mu m g \cos \alpha}{m}=g(\sin \alpha+\mu \cos \alpha)= \\
& =9.8\left(\sin 38^{\circ}+0.3 \cos 38^{\circ}\right)=8.36 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Now lets find time of riding:

$$
t=\frac{v}{a}=\frac{10}{8.36} \approx 1.2 \mathrm{~s}
$$

Now we can find how far will the rider go up the hill before stopping

$$
s=v_{0} t-a t^{2} / 2=10 \cdot 1.2-8.36 \cdot 1.2^{2} / 2 \approx 6 \mathrm{~m}
$$

