Answer on question \#56692, Physics / Other

Question A 1100kg car accelerates from $48 \mathrm{~km} / \mathrm{hr}$ to $59 \mathrm{~km} / \mathrm{hr}$ over 100 m . What was the magnitude of the net force acting on it?

Solution Let us first find acceleration from equation of motion and equation of velocity:

$$
\begin{gathered}
s=v_{0} t+a t^{2} / 2 \\
v_{f}=v_{0}+a t
\end{gathered}
$$

where $s=100, v_{0}=48 \mathrm{~km} / \mathrm{hr}=13.3 \mathrm{~m} / \mathrm{s}, v_{f}=59 \mathrm{~km} / \mathrm{h}=16.4 \mathrm{~m} / \mathrm{s}$. From second

$$
t=\frac{v_{f}-v_{0}}{a}
$$

Then first transforms to

$$
s=v_{0} \frac{v_{f}-v_{0}}{a}+\frac{\left(v_{f}-v_{0}\right)^{2}}{2 a}
$$

From this
$a=\frac{v_{0}\left(v_{f}-v_{0}\right)+\left(v_{f}-v_{0}\right)^{2}}{s}=\frac{13.3(16.4-13.3)+(16.4-13.3)^{2}}{100} \approx 0.5 \mathrm{~m} / \mathrm{s}^{2}$
Hence, the force is

$$
F=m a=1100 \cdot 0.5=550 \mathrm{~N}
$$

