

Answer on Question #56595, Physics Mechanics Relativity

The flywheel of a large motor in a factory has mass 30 kg and moment of inertia $67.5\text{kg}\cdot\text{m}^2$ about rotation axis. The motor develops a constant torque of $600\text{Nt}\cdot\text{m}$, and the flywheel starts from rest.

- (a) What is the angular acceleration of the flywheel?
- (b) What is its angular velocity after making 4 revolutions?
- (c) How much work is done by the motor during the first 4 revolutions?
- (d) What is the average power output of the motor during the first 4 revolutions?

Solution

(a)

$$M = J\epsilon \quad (1)$$

where $M = 600\text{N}\cdot\text{m}$ is a constant torque; ϵ is the angular acceleration of the flywheel; $J = 67.5\text{kg}\cdot\text{m}^2$ is moment of inertia about rotation axis.

Then

$$\epsilon = M / J = 600\text{N}\cdot\text{m} / 67.5\text{kg}\cdot\text{m}^2 \approx 8.89\text{rad/s}^2$$

(b)

Angular velocity:

$$\omega = \omega_0 + \epsilon t \quad (2)$$

$\omega_0 = 0$ (flywheel starts from rest).

The angle of rotation

$$\varphi = \varphi_0 + \omega_0 t + \frac{1}{2} \varepsilon t^2 \quad (3)$$

where $\omega_0 = 0$ and $\varphi_0 = 0$ (flywheel starts from rest).

4 revolutions $\varphi = 4 \cdot 2\pi$, then from (3)

$$t = \sqrt{16\pi/\varepsilon} = 4\sqrt{\pi/\varepsilon} = 2.38s \quad (4)$$

Angular velocity after making 4 revolutions:

$$\omega = \varepsilon t = \varepsilon 4\sqrt{\pi/\varepsilon} = 4\sqrt{\pi\varepsilon} = 4\sqrt{\pi \cdot 8.89} \approx 21.14 \text{ rad/s} \quad (5)$$

(c)

The work is done by the motor during the first 4 revolutions:

$$A = \frac{J\omega^2}{2} - \frac{J\omega_0^2}{2} = \frac{J\omega^2}{2} - 0 = \frac{J\omega^2}{2} = \frac{67.5 \cdot 8.89^2}{2} = 2667.33J = 2.67kJ \quad (6)$$

(d)

The average power output of the motor during the first 4 revolutions:

$$\langle P \rangle = \frac{A}{t} = \frac{2667.33}{2.38} = 1120 \text{ Watt}$$