## Answer on Question \#56590, Physics Mechanics Relativity

A uniform rod of mass $m$ and length $l$ rests on a smooth horizontal surface. One of the ends of the rod is struck in a horizontal direction at right angles to the rod. As a result the rod obtains velocity $v_{0}$. Find the force with which one half of the rod will act the other in the process of motion.

## Solution

Due to hitting of the ball the angular impulse by the rod about the $m v_{0} l / 2$. If $\omega$ is the angular velocity acquired by the rod. We have,

$$
\begin{equation*}
J \omega=\frac{m v_{0} l}{2} \Rightarrow \frac{1}{12} m l^{2} \omega=\frac{m v_{0} l}{2} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega=\frac{6 v_{0}}{l} \tag{2}
\end{equation*}
$$

For the frame of C.M., the rod is rotating about an axis passing through its mid point with the angular velocity $\omega$. Hence the force exerted by the one half on the other= mass of half acceleration of the C.M. of that half in the C.M. frame

$$
f=\frac{m}{2} \omega^{2} \cdot \frac{l}{4}=\frac{m}{8} \omega^{2} \cdot l=\frac{m}{8}\left(\frac{6 v_{0}}{l}\right)^{2} \cdot l=\frac{9 m v_{0}^{2}}{2 l}
$$

Answer: $f=\frac{9 m v_{0}^{2}}{2 l}$

