Answer on Question \#56545-Physics-Mechanics-Relativity

Question 3 has not seen.
(iv) A man of mass m_{1} stands on the edge of a horizontal uniform disc of mass m_{2} and radius R which is capable of rotating freely about a stationary vertical axis passing through its centre. The man walks along the edge of the disc through angle θ relative to the disc and then stops. Find the angle through which the disc turned the time the man stopped.
$\left\lceil\frac{2 m_{1} \theta}{2 m_{1}+m_{2}}\right\rfloor$

Solution

According to the conservation of momentum law:

$$
m_{1} \omega_{1} R=\frac{I_{d i s k} \omega_{2}}{R}=\frac{m_{2} \omega_{2} R^{2}}{2 R}=\frac{m_{2} \omega_{2} R}{2} \rightarrow \omega_{1}=\frac{m_{2} \omega_{2}}{2 m_{1}}
$$

The angular velocity of man relative to the disk is

$$
\omega=\omega_{1}+\omega_{2}=\frac{m_{2} \omega_{2}}{2 m_{1}}+\omega_{2}=\frac{2 m_{1}+m_{2}}{2 m_{1}} \omega_{2}
$$

Thus,

$$
\omega_{2}=\frac{2 m_{1}}{2 m_{1}+m_{2}} \omega
$$

The angle for disk is

$$
\phi=\omega_{2} t=\frac{2 m_{1}}{2 m_{1}+m_{2}} \omega t=\frac{2 m_{1}}{2 m_{1}+m_{2}} \theta
$$

Answer: $\frac{2 m_{1}}{2 m_{1}+m_{2}} \boldsymbol{\theta}$.

