Answer on Question \#56537-Physics-Other

Starting from rest, a powerful biker can achieve an acceleration of $20 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 500 m .
A. Calculate the speed of a biker in kilometers/hour at the end of 500 m .
B. Express your calculated speed in ft / h.

Solution

a. Let use kinematic equation:

$$
v_{f}^{2}-v_{i}^{2}=2 a S
$$

In our case:

$$
v_{i}=0 ; a=20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} ; S=500 \mathrm{~m}
$$

The speed of a biker is

$$
v_{f}=\sqrt{2 a S}=\sqrt{2 \cdot 20 \cdot 500}=141.42 \frac{\mathrm{~m}}{\mathrm{~s}} \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=510 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

B.

$$
v_{f}=510 \frac{\mathrm{~km}}{\mathrm{~h}} \frac{3280.84 \mathrm{ft}}{\mathrm{~km}}=1.7 \cdot 10^{6} \frac{\mathrm{ft}}{\mathrm{~h}} .
$$

