Answer on Question\#56370 - Physics - Classical Mechanics

4-63 The centre of mass of a non uniform rod of length L whose mass per unit length ρ varies z $\rho=\frac{k x^{2}}{L}$ where k is a constant and x is the distance of any point from one end, is (from the same end):
(A) $\frac{3}{4} L$
(B) $\frac{1}{4} L$
(C) $\frac{k}{L}$
(D) $\frac{3 k}{L}$

4-64 A disk moving on a frictionless horizontal table collides elastically with another identical disk as shown. The directions of motion of the two disks make angles θ and ϕ with the initial line of motion as shown. Then :
(A) $\theta=30^{\circ}$
(B) $\theta=60^{\circ}$
(C) $\phi=30^{\circ}$
(D) $\phi=60^{\circ}$

Figure 4.104

4-65 Two objects move in the same direction in a straight line. One moves with a constant velocity The other starts at rest and has constant acceleration a. They collide when the second object has velo $2 V_{1}$. The distance between the two objects when the second one starts moving is :
(A) Zero
(B) $\frac{V_{1}^{2}}{2 a}$
(C) $\frac{V_{1}^{2}}{a}$
(D) $\frac{2 H_{1}^{2}}{a}$

Solution:

64.

From the above figure it's easy to see that

$$
\sin \phi=\frac{R}{2 R}=\frac{1}{2} \Rightarrow \phi=30^{\circ}
$$

And

$$
\theta=90^{\circ}-\phi=90^{\circ}-30^{\circ}=60^{\circ}
$$

Thus the correct answers are (C) and (B).
65. Let the initial distance between objects be l_{0}, and the initial position of the accelerating object be 0 . Then the dependence of position of the accelerating object on time is given by

$$
x_{1}(t)=\frac{a t^{2}}{2}
$$

The position of the second object is

$$
x_{2}(t)=l_{0}+v_{1} t
$$

The time that has passed before the collision t_{c} and the final velocity $\left(v_{f}=2 v_{1}\right)$ of the accelerating object a related by (the initial velocity v_{i} is zero)

$$
a t_{c}=v_{f}-v_{i}=2 v_{1}
$$

Thus

$$
t_{c}=\frac{2 v_{1}}{a}
$$

At time t_{c} they collide, i.e.

$$
\begin{gathered}
x_{1}\left(t_{c}\right)=x_{2}\left(t_{c}\right) \\
\frac{a\left(\frac{2 v_{1}}{a}\right)^{2}}{2}=l_{0}+v_{1} \frac{2 v_{1}}{a} \\
l_{0}=0
\end{gathered}
$$

Therefore the correct answer is (A).

Answer:

64. (B), (C)
65. (A)
