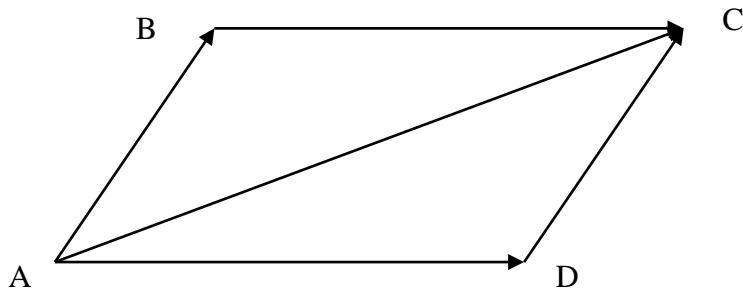


Answer on Question #56260, Physics / Mechanics | Relativity

15 if two vectors are represented in magnitude and direction by adjacent sides of a parallelogram the resultant is represented in magnitude and direction by the _____ drawn from the origin of the vectors


vertices

diagonal

two sides

remaining side

Solution:

Two vectors are represented by adjacent sides AB and AD. Since opposite sides of parallelogram are equal ($AD = BC$), thus $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$, which is the diagonal drawn from the origin of the vectors.

Answer: diagonal

16 a particle moves along the x-axis in such a way that its position at any instant is given by

$x = 5t^2 + 1$, where x is in meters and t is in seconds. calculate its average velocity in the time interval between 2s and 3s.

25ms⁻¹

30ms⁻¹

50ms⁻¹

15ms⁻¹

Solution:

$$V_{avg} = \frac{X(T_2) - X(T_1)}{\Delta T}$$

$$X(T_1) = 5 \times 2^2 + 1 = 21 \text{ m}$$

$$X(T_2) = 5 \times 3^2 + 1 = 46 \text{ m}$$

$$V_{avg} = \frac{46 - 21}{1} = 25 \text{ m/s}$$

Answer: 25 m/s

<https://www.AssignmentExpert.com>