Answer onQuestion \#56221, Physics / Mechanics | Relativity

A synchronous satellite circles the earth eastward above equator once every 24 h and stays over the same spot on the earth because the earth is rotating at the same rate. What is the orbital radius of the synchronous satellite?
$4.2 \times 10^{7} \mathrm{~m}$
$6.4 \times 10^{7} \mathrm{~m}$
$3.6 \times 10^{7} \mathrm{~m}$

Solution:

Law of Gravitation:
This attractive force is the gravitational force between Earth and the satellite.
Gravity provides the inward pull that keeps the satellite in orbit.

Assuming a circular orbit, the gravitational force must equal the centripetal force.

$$
\frac{m v^{2}}{r}=\frac{G m m_{E}}{r^{2}}
$$

where
$v=$ tangential velocity
$r=$ orbit radius $=R_{E}+h$ (i.e. not the altitude of the orbit)
$R_{E}=$ radius of Earth
$h=$ altitude of orbit $=$ height above Earth's surface
$\mathrm{m}=$ mass of satellite
$\mathrm{m}_{\mathrm{E}}=$ mass of Earth $=5.974^{*} 10^{\wedge} 24 \mathrm{~kg}$
$\mathrm{G}=6.673 * 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$

$$
v=\sqrt{\left(\frac{G m_{E}}{r}\right)}
$$

The period of the satellite's orbit is

$$
\begin{gathered}
T=\frac{2 \pi r}{v}=2 \pi r \sqrt{\frac{r}{G m_{E}}}=2 \pi \sqrt{\frac{r^{3}}{G m_{E}}} \\
T=24 h=24 * 3600 \mathrm{~s}
\end{gathered}
$$

Thus,

$$
\begin{gathered}
r=\sqrt[3]{G m_{E}\left(\frac{T}{2 \pi}\right)^{2}} \\
r=\sqrt[3]{\left(6.673 \cdot 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}\right)\left(5.974 \cdot 10^{24} \mathrm{~kg}\right)\left(\frac{24 \cdot 3600 \mathrm{~s}}{2 \pi}\right)^{2}}=4.22 \cdot 10^{7} \mathrm{~m}
\end{gathered}
$$

Answer: $4.2 \times 10^{7} \mathrm{~m}$
http://www.AssignmentExpert.com/

