

## Answer on Question#56031 - Physics - Classical Mechanics

Momentum is closely related to which of the following? and why?

- (1) impulse
- (2) kinetic energy
- (3) angular momentum
- (4) velocity

Solution:

The momentum  $\mathbf{p}$  is related to all of these.

The impulse  $\mathbf{J}$  is the integral of the resultant force with respect to time. From Newton's second law, the force  $\mathbf{F}$  is related to momentum  $\mathbf{p}$  by

$$\mathbf{F} = \frac{d\mathbf{p}}{dt}$$

Therefore

$$\mathbf{J} = \int_{t_1}^{t_2} \mathbf{F} dt = \int_{t_1}^{t_2} \frac{d\mathbf{p}}{dt} dt = \int_{\mathbf{p}_1}^{\mathbf{p}_2} d\mathbf{p} = \mathbf{p}_2 - \mathbf{p}_1$$

Namely it is the change in momentum.

Kinetic energy  $E_k$  of the particle of mass  $m$  can be expressed through its momentum  $\mathbf{p}$  as follows

$$E_k = \frac{\mathbf{p}^2}{2m}$$

Angular momentum  $\mathbf{L}$  of the particle with respect to some point  $O$  (distance from  $O$  to the particle is  $\mathbf{r}$ ) can be expressed through its momentum  $\mathbf{p}$  as follows

$$\mathbf{L} = \mathbf{r} \times \mathbf{p}$$

The velocity  $\mathbf{v}$  of the particle of mass  $m$  is connected with its momentum  $\mathbf{p}$  by the following relation

$$\mathbf{p} = m\mathbf{v}$$

Answer: (1), (2), (3), (4).

<https://www.AssignmentExpert.com>