Question \#55932, Physics / Classical Mechanics |

A car of mass m has an engine which can deliver power P. The minimum time in which car can be accelerated from rest to a speed v is
(a) $\left(m v^{\wedge} 2\right) / 2 P$
(b) $P m v^{\wedge} 2$
(c) $2 P_{m v}{ }^{\wedge} 2$
(d) $\left(m v^{\wedge} 2\right) P / 2$

Answer:

Kinetic energy of car which is needed to provide speed v is:
$E=\left(m v^{2}\right) / 2$

From another hand, $\mathrm{P}=\mathrm{E} / \mathrm{t}$, where t - the time of acceleration.

Thus, $t=E / P=\left(m v^{2}\right) / 2 P$. Answer is (a).

