Answer on Question \#55931-Physics-Classical Mechanics

A pump is used to pump a liquid of density D continuously through a pipe of cross section area A. If liquid is flowing with speed v, then power of pump is
(a) $\left(D A v^{\wedge} 2\right) / 3$
(b) $\left(D A v^{\wedge} 2\right) / 2$
(c) $2 D_{A v}{ }^{\wedge} 2$
(d) $\left(D A v^{\wedge} 3\right) / 2$

Solution

The mass of liquid is

$$
m=D \cdot V=D A v t
$$

The kinetic energy is

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2} D A v t v^{2}=\frac{1}{2} D A t v^{3} .
$$

The power of pump is

$$
P=\frac{K}{t}=\frac{1}{2} D A v^{3}
$$

Answer: (d) (DAv^3)/2.

